Антикризисный подход к аналитике: актуальные метрики, технологии, идеи
Posted: Mon Dec 23, 2024 6:58 am
Маркетинговая аналитика не стоит на месте: обновляются инструменты, подходы, решения. Почему некоторые метрики устаревают и какие приходят им на смену, рассказывает Сергей Шивалин — независимый эксперт, создатель UMSolution. Сергей создал и внедрил более 120 проектов по аналитике. Имеет 10 лет опыта в комплексном интернет-маркетинге и увеличении продаж, 4 года опыта создания сложных аналитических систем. Работал с компаниями Mercedes Benz, «Автомир», Ostin.
Сергей Шивалин, product owner: системы Пример тайваньского номера телефона сквозной аналитики в UMSolution
— Сергей, чем именно ты занимаешься и какие инструменты используешь в своей работе?
У меня сейчас три основных направления работы:
— создание систем сквозной аналитики (dwh, etl, дашборды);
— маркетинговый анализ деятельности бизнеса и товарная аналитика на основе данных;
— классический консалтинг в сфере аналитики.
Для сквозной аналитики я использую на 70 % инфраструктуру Google Cloud Platform (GCP):
Google Analytics
Google Data Studio
Google Docs
Google BigQuery / SQL
Кризис 2020 года показал, что стоимость владения инфраструктурой для аналитики является очень важным моментом для бизнеса, который начинает испытывать проблемы с оборотом. А цена владения инфраструктурой на Google Cloud Platform (GCP) для малых и средних предприятий либо нулевая, либо стоит очень небольших денег, что позволяет постоянно иметь доступ к актуальным данным. При этом платежи за платную версию Google Cloud Platform, (в частности за GA 360) уже существенны — от $10 000 в месяц. Но GA 360 нужен для крупного бизнеса. Субъекты малого и среднего предпринимательства могут годами работать без дополнительных платежей. Главное, правильно все настроить.
При этом GCP отлично интегрируется между собственными продуктами за счет нативных коннекторов, а развитые возможности API и различных дополнительных служб, таких как Google Apps Script, позволяют подключать другие внешние сервисы, необходимые для построения сквозной аналитики. Например, передачу звонков из систем коллтрекинга. Причем не только в трекер Universal Analytics, но и в Google Таблицы, где уже можно делать более продвинутую аналитику, матчить данные, считать различные нестандартные метрики без навыков программиста, настраивать обновление данных.
Около 20 % моих работ связано с вертикалью Microsoft. Как бы многие на рынке ни были против, но xlsx используется большей частью бизнеса. И PPT.
Также в последнее время я снова начал эксперименты на аналитической вертикали Яндекса. У Яндекса есть свои крутые возможности, которых нет в других системах. Например, недавно узнал, что в API Метрики более 20 тысяч методов для удовлетворения запросов самых требовательных аналитиков. Но Яндексу есть куда расти по удобству работы и инструментарию, чтобы удовлетворить потребности аналитиков.
Не сливайте рекламный бюджет впустую
Сервис коллтрекинга и сквозной аналитики покажет эффективность каждого источника в разрезе «от клика до продажи».
Получить консультацию
— Какие задачи ты решаешь при помощи сквозной аналитики?
В основном мы заняты решением конкретных проблем бизнеса. Бизнес ставит задачи, мы находим оптимальное решение, которое должно быть сбалансировано по нескольким критериям:
качество данных;
цена;
результат.
Основным вопросом бизнеса в 2020 году стал вопрос выживания и оптимизации затрат. Сквозная аналитика, конечно, не панацея и не птица счастья завтрашнего дня, но многим помогла выжить в период многомесячного локдауна, перестроить процессы. А те клиенты, которые делали сквозную аналитику для галочки (директор захотел), при этом особенно не вовлекаясь в процесс анализа, ушли с рынка.
Приведу пример.
До внедрения аналитики компания двигалась волнообразно. Были взлеты и падения. Чаще всего владельцы не могли адекватно понять причины различных ситуаций в бизнесе — как негативных, так и позитивных. После внедрения удалось найти множество ошибок в технической работе сайта, из-за которых наблюдалась пессимизация в выдаче поисковых систем, так как эти ошибки влияют на SEO. Некоторые страницы отдавали неверные статусы, где-то ломались get-параметры и т.д.
Клиент сменил подрядчика по разработке. Увеличили бюджет в эффективные рекламные кампании, убрав неэффективные платные источники. Эффективность источников начали оценивать не right now только по атрибуции last-click, но и по LTV и когортному анализу с добавлением в оценку модели атрибуции first-click.
Изменились циклы работы в маркетинге. Если ранее циклы принятия решения были недельные, то теперь они перестроились по периодам формирования когорт для когортного анализа.
Сергей Шивалин, product owner: системы Пример тайваньского номера телефона сквозной аналитики в UMSolution
— Сергей, чем именно ты занимаешься и какие инструменты используешь в своей работе?
У меня сейчас три основных направления работы:
— создание систем сквозной аналитики (dwh, etl, дашборды);
— маркетинговый анализ деятельности бизнеса и товарная аналитика на основе данных;
— классический консалтинг в сфере аналитики.
Для сквозной аналитики я использую на 70 % инфраструктуру Google Cloud Platform (GCP):
Google Analytics
Google Data Studio
Google Docs
Google BigQuery / SQL
Кризис 2020 года показал, что стоимость владения инфраструктурой для аналитики является очень важным моментом для бизнеса, который начинает испытывать проблемы с оборотом. А цена владения инфраструктурой на Google Cloud Platform (GCP) для малых и средних предприятий либо нулевая, либо стоит очень небольших денег, что позволяет постоянно иметь доступ к актуальным данным. При этом платежи за платную версию Google Cloud Platform, (в частности за GA 360) уже существенны — от $10 000 в месяц. Но GA 360 нужен для крупного бизнеса. Субъекты малого и среднего предпринимательства могут годами работать без дополнительных платежей. Главное, правильно все настроить.
При этом GCP отлично интегрируется между собственными продуктами за счет нативных коннекторов, а развитые возможности API и различных дополнительных служб, таких как Google Apps Script, позволяют подключать другие внешние сервисы, необходимые для построения сквозной аналитики. Например, передачу звонков из систем коллтрекинга. Причем не только в трекер Universal Analytics, но и в Google Таблицы, где уже можно делать более продвинутую аналитику, матчить данные, считать различные нестандартные метрики без навыков программиста, настраивать обновление данных.
Около 20 % моих работ связано с вертикалью Microsoft. Как бы многие на рынке ни были против, но xlsx используется большей частью бизнеса. И PPT.
Также в последнее время я снова начал эксперименты на аналитической вертикали Яндекса. У Яндекса есть свои крутые возможности, которых нет в других системах. Например, недавно узнал, что в API Метрики более 20 тысяч методов для удовлетворения запросов самых требовательных аналитиков. Но Яндексу есть куда расти по удобству работы и инструментарию, чтобы удовлетворить потребности аналитиков.
Не сливайте рекламный бюджет впустую
Сервис коллтрекинга и сквозной аналитики покажет эффективность каждого источника в разрезе «от клика до продажи».
Получить консультацию
— Какие задачи ты решаешь при помощи сквозной аналитики?
В основном мы заняты решением конкретных проблем бизнеса. Бизнес ставит задачи, мы находим оптимальное решение, которое должно быть сбалансировано по нескольким критериям:
качество данных;
цена;
результат.
Основным вопросом бизнеса в 2020 году стал вопрос выживания и оптимизации затрат. Сквозная аналитика, конечно, не панацея и не птица счастья завтрашнего дня, но многим помогла выжить в период многомесячного локдауна, перестроить процессы. А те клиенты, которые делали сквозную аналитику для галочки (директор захотел), при этом особенно не вовлекаясь в процесс анализа, ушли с рынка.
Приведу пример.
До внедрения аналитики компания двигалась волнообразно. Были взлеты и падения. Чаще всего владельцы не могли адекватно понять причины различных ситуаций в бизнесе — как негативных, так и позитивных. После внедрения удалось найти множество ошибок в технической работе сайта, из-за которых наблюдалась пессимизация в выдаче поисковых систем, так как эти ошибки влияют на SEO. Некоторые страницы отдавали неверные статусы, где-то ломались get-параметры и т.д.
Клиент сменил подрядчика по разработке. Увеличили бюджет в эффективные рекламные кампании, убрав неэффективные платные источники. Эффективность источников начали оценивать не right now только по атрибуции last-click, но и по LTV и когортному анализу с добавлением в оценку модели атрибуции first-click.
Изменились циклы работы в маркетинге. Если ранее циклы принятия решения были недельные, то теперь они перестроились по периодам формирования когорт для когортного анализа.